Randomized Trials Built on Sand: Examples From COPD, Hormone Therapy, and Cancer.

Randomized Trials Built on Sand: Examples from COPD, Hormone Therapy, and Cancer.

Rambam Maimonides Med J. 2012 Jul; 3(3): e0014
Suissa S

The randomized controlled trial is the fundamental study design to evaluate the effectiveness of medications and receive regulatory approval. Observational studies, on the other hand, are essential to address post-marketing drug safety issues but have also been used to uncover new indications or new benefits for already marketed drugs. Hormone replacement therapy (HRT) for instance, effective for menopausal symptoms, was reported in several observational studies during the 1980s and 1990s to also significantly reduce the incidence of coronary heart disease. This claim was refuted in 2002 by the large-scale Women’s Health Initiative randomized trial. An example of a new indication for an old drug is that of metformin, an anti-diabetic medication, which is being hailed as a potential anti-cancer agent, primarily on the basis of several recent observational studies that reported impressive reductions in cancer incidence and mortality with its use. These observational studies have now sparked the conduct of large-scale randomized controlled trials currently ongoing in cancer. We show in this paper that the spectacular effects on new indications or new outcomes reported in many observational studies in chronic obstructive pulmonary disease (COPD), HRT, and cancer are the result of time-related biases, such as immortal time bias, that tend to seriously exaggerate the benefits of a drug and that eventually disappear with the proper statistical analysis. In all, while observational studies are central to assess the effects of drugs, their proper design and analysis are essential to avoid bias. The scientific evidence on the potential beneficial effects in new indications of existing drugs will need to be more carefully assessed before embarking on long and expensive unsubstantiated trials. HubMed – drug

First-in-Human Phase 1 Studies in Oncology: The New Challenge for Investigative Sites.

Rambam Maimonides Med J. 2012 Apr; 3(2): e0007
Salzberg M

Phase 1 first-in-human studies with anti-cancer products differ from other phase 1 studies in that they are evaluated in patients rather than healthy volunteers. The rationale design of targeted drugs triggers changes in the design of these studies. Patient populations are more precisely defined and pose a challenge to the efficient inclusion of study patients. Objectives shift from the definition of a maximum tolerated dose to the evaluation of a recommended phase 2 dose. Other challenges related to the efficacy and safety profile of novel targeted anti-cancer drugs call for changes in designing first-in-human studies, such as definitions of biological doses, collection of fresh tumor tissue for surrogate marker analyses, and the management of infusion-related reactions with monoclonal antibodies. Consequently, the conduct of phase 1 clinical trials in oncology requires changes. Corresponding education with particular focus on phase 1 trials and on the complex drug development process needs to be an integrated part of the medical oncology curriculum for physicians and nursing staff. This is a crucial element for institutions to remain or become clinical research sites for phase 1 studies, and to participate in the drug development process of novel anti-cancer compounds in the future. HubMed – drug

Intracellular Protein Degradation: From a Vague Idea through the Lysosome and the Ubiquitin-Proteasome System and onto Human Diseases and Drug Targeting.

Rambam Maimonides Med J. 2012 Jan; 3(1): e0001
Ciechanover A

Between the 1950s and 1980s, scientists were focusing mostly on how the genetic code was transcribed to RNA and translated to proteins, but how proteins were degraded had remained a neglected research area. With the discovery of the lysosome by Christian de Duve it was assumed that cellular proteins are degraded within this organelle. Yet, several independent lines of experimental evidence strongly suggested that intracellular proteolysis was largely non-lysosomal, but the mechanisms involved have remained obscure. The discovery of the ubiquitin-proteasome system resolved the enigma. We now recognize that degradation of intracellular proteins is involved in regulation of a broad array of cellular processes, such as cell cycle and division, regulation of transcription factors, and assurance of the cellular quality control. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of human disease, such as malignancies and neurodegenerative disorders, which led subsequently to an increasing effort to develop mechanism-based drugs. HubMed – drug

Impact of heparanase and the tumor microenvironment on cancer metastasis and angiogenesis: basic aspects and clinical applications.

Rambam Maimonides Med J. 2011 Jan; 2(1): e0019
Vlodavsky I, Elkin M, Ilan N

Heparanase is an endo-?-D-glucuronidase that cleaves heparan sulfate (HS) side chains at a limited number of sites, activity that is strongly implicated with cell invasion associated with cancer metastasis, a consequence of structural modification that loosens the extracellular matrix barrier. Heparanase activity is also implicated in neovascularization, inflammation, and autoimmunity, involving migration of vascular endothelial cells and activated cells of the immune system. The cloning of a single human heparanase cDNA 10 years ago enabled researchers to critically approve the notion that HS cleavage by heparanase is required for structural remodeling of the extracellular matrix (ECM), thereby facilitating cell invasion. Heparanase is preferentially expressed in human tumors and its over-expression in tumor cells confers an invasive phenotype in experimental animals. The enzyme also releases angiogenic factors residing in the tumor microenvironment and thereby induces an angiogenic response in vivo. Heparanase up-regulation correlates with increased tumor vascularity and poor postoperative survival of cancer patients. These observations, the anticancerous effect of heparanase gene silencing and of heparanase-inhibiting molecules, as well as the unexpected identification of a single functional heparanase suggest that the enzyme is a promising target for anticancer drug development. Progress in the field expanded the scope of heparanase function and its significance in tumor progression and other pathologies such as inflammatory bowel disease and diabetic nephropathy. Notably, while heparanase inhibitors attenuated tumor progression and metastasis in several experimental systems, other studies revealed that heparanase also functions in an enzymatic activity-independent manner. Thus, point-mutated inactive heparanase was noted to promote phosphorylation of signaling molecules such as Akt and Src, facilitating gene transcription (i.e. VEGF) and phosphorylation of selected Src substrates (i.e. EGF receptor). The concept of enzymatic activity-independent function of heparanase gained substantial support by elucidation of the heparanase C-terminus domain as the molecular determinant behind its signaling capacity and the identification of a human heparanase splice variant (T5) devoid of enzymatic activity, yet endowed with protumorigenic characteristics. Resolving the heparanase crystal structure will accelerate rational design of effective inhibitory molecules and neutralizing antibodies, paving the way for advanced clinical trials in patients with cancer and other diseases involving heparanase. HubMed – drug