Presentation of Smoking-Associated Cues Does Not Elicit Dopamine Release After One-Hour Smoking Abstinence: A [(11)C]-(+)-PHNO PET Study.

Presentation of Smoking-Associated Cues Does Not Elicit Dopamine Release after One-Hour Smoking Abstinence: A [(11)C]-(+)-PHNO PET Study.

PLoS One. 2013; 8(3): e60382
Chiuccariello L, Boileau I, Guranda M, Rusjan PM, Wilson AA, Zawertailo L, Houle S, Busto U, Le Foll B

The presentation of drug-associated cues has been shown to elicit craving and dopamine release in the striatum of drug-dependent individuals. Similarly, exposure to tobacco-associated cues induces craving and increases the propensity to relapse in tobacco- dependent smokers. However, whether exposure to tobacco-associated cues elicits dopamine release in the striatum of smokers remains to be investigated. We hypothesized that presentation of smoking-related cues compared to neutral cues would induce craving and elevation of intrasynaptic dopamine levels in subregions of the striatum and that the magnitude of dopamine release would be correlated with subjective levels of craving in briefly abstinent tobacco smokers. Eighteen participants underwent two [(11)C]-(+)-PHNO positron emission tomography (PET) scans after one-hour abstinence period: one during presentation of smoking-associated images and one during presentation of neutral images. Smoking cues significantly increased craving compared to neutral cues on one, but not all, craving measures; however, this increase in craving was not associated with overall significant differences in [(11)C]-(+)-PHNO binding potential (BPND) (an indirect measure of dopamine release) between the two experimental conditions in any of the brain regions of interest sampled. Our findings suggest that presentation of smoking cues does not elicit detectable (by PET) overall increases in dopamine in humans after one-hour nicotine abstinence. Future research should consider studying smoking cue-induced dopamine release at a longer abstinence period, since recent findings suggest the ability of smoking-related cues to induce craving is associated with a longer duration of smoking abstinence. HubMed – addiction


Altered default network resting-state functional connectivity in adolescents with internet gaming addiction.

PLoS One. 2013; 8(3): e59902
Ding WN, Sun JH, Sun YW, Zhou Y, Li L, Xu JR, Du YS

Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA).Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS) and Barratt Impulsiveness Scale-11 (BIS-11) and their hours of Internet use per week.There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours) (p<0.0001) and higher CIAS (p<0.0001) and BIS-11 (p?=?0.01) scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule.Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients with substance addiction, they support the hypothesis that IGA as a behavioral addiction that may share similar neurobiological abnormalities with other addictive disorders. HubMed – addiction


Gene expression in brain and liver produced by three different regimens of alcohol consumption in mice: comparison with immune activation.

PLoS One. 2013; 8(3): e59870
Osterndorff-Kahanek E, Ponomarev I, Blednov YA, Harris RA

Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water) in different consumption tests and one injected with lipopolysaccharide (vs. vehicle). The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic), two bottle choice available every other day (Chronic Intermittent) and limited access to one bottle of ethanol (Drinking in the Dark). Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY) network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark) groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol consumption and immune activation in both liver and brain and show distinct genomic consequences of different types of alcohol consumption. HubMed – addiction