Antiviral Lectins From Red and Blue-Green Algae Show Potent in Vitro and in Vivo Activity Against Hepatitis C Virus.

Antiviral Lectins from Red and Blue-Green Algae Show Potent In Vitro and In Vivo Activity against Hepatitis C Virus.

PLoS One. 2013; 8(5): e64449
Takebe Y, Saucedo CJ, Lund G, Uenishi R, Hase S, Tsuchiura T, Kneteman N, Ramessar K, Tyrrell DL, Shirakura M, Wakita T, McMahon JB, O’Keefe BR

Hepatitis C virus (HCV) infection is a significant public health problem with over 170,000,000 chronic carriers and infection rates increasing worldwide. Chronic HCV infection is one of the leading causes of hepatocellular carcinoma which was estimated to result in ?10,000 deaths in the United States in the year 2011. Current treatment options for HCV infection are limited to PEG-ylated interferon alpha (IFN-?), the nucleoside ribavirin and the recently approved HCV protease inhibitors telaprevir and boceprevir. Although showing significantly improved efficacy over the previous therapies, treatment with protease inhibitors has been shown to result in the rapid emergence of drug-resistant virus. Here we report the activity of two proteins, originally isolated from natural product extracts, which demonstrate low or sub-nanomolar in vitro activity against both genotype I and genotype II HCV. These proteins inhibit viral infectivity, binding to the HCV envelope glycoproteins E1 and E2 and block viral entry into human hepatocytes. In addition, we demonstrate that the most potent of these agents, the protein griffithsin, is readily bioavailable after subcutaneous injection and shows significant in vivo efficacy in reducing HCV viral titers in a mouse model system with engrafted human hepatocytes. These results indicate that HCV viral entry inhibitors can be an effective component of anti-HCV therapy and that these proteins should be studied further for their therapeutic potential. HubMed – drug


In Vitro Activity of Daptomycin against Enterococcus faecalis under Various Conditions of Growth-Phases, Inoculum and pH.

PLoS One. 2013; 8(5): e64218
Argemi X, Hansmann Y, Christmann D, Lefebvre S, Jaulhac B, Jehl F

Enterococcus faecalis (E. faecalis) has become a major leading cause of nosocomial endocarditis. Treatment of such infections remains problematic and new therapeutic options are needed. Nine E. faecalis strains were tested: six obtained from patients presenting endocarditis, one with isolated bacteremia, and two reference strains. Antibiotics included daptomycin, alone or in combination, linezolid, tigecycline, rifampicin, gentamicin, teicoplanin, ceftriaxone and amoxicillin. Time-kill studies included colony counts at 1, 4 and 24 h of incubation. Significant bactericidal activity was defined as a decrease of ?3log10CFU/ml after 24 h of incubation. Antibiotics were tested at a low (10(6) CFU/ml) and high (10(9) CFU/ml) inoculum, against exponential- and stationary-phase bacteria. We also performed time kill studies of chemically growth arrested E. faecalis. Various pH conditions were used during the tests. In exponential growth phase and with a low inoculum, daptomycin alone at 60 µg/ml and the combination amoxicillin-gentamicin both achieved a 4-log10 reduction in one hour on all strains. In exponential growth phase with a high inoculum, daptomycin alone was bactericidal at a concentration of 120 µg/ml. All the combinations tested with this drug were indifferent. In stationary phase with a high inoculum daptomycin remained bactericidal but exhibited a pH dependent activity and slower kill rates. All combinations that did not include daptomycin were not bactericidal in conditions of high inoculum, whatever the growth phase. The results indicate that daptomycin is the only antibiotic that may be able of overcoming the effects of growth phase and high inoculum. HubMed – drug


Integration of Microfractionation, qNMR and Zebrafish Screening for the In Vivo Bioassay-Guided Isolation and Quantitative Bioactivity Analysis of Natural Products.

PLoS One. 2013; 8(5): e64006
Bohni N, Cordero-Maldonado ML, Maes J, Siverio-Mota D, Marcourt L, Munck S, Kamuhabwa AR, Moshi MJ, Esguerra CV, de Witte PA, Crawford AD, Wolfender JL

Natural products (NPs) are an attractive source of chemical diversity for small-molecule drug discovery. Several challenges nevertheless persist with respect to NP discovery, including the time and effort required for bioassay-guided isolation of bioactive NPs, and the limited biomedical relevance to date of in vitro bioassays used in this context. With regard to bioassays, zebrafish have recently emerged as an effective model system for chemical biology, allowing in vivo high-content screens that are compatible with microgram amounts of compound. For the deconvolution of the complex extracts into their individual constituents, recent progress has been achieved on several fronts as analytical techniques now enable the rapid microfractionation of extracts, and microflow NMR methods have developed to the point of allowing the identification of microgram amounts of NPs. Here we combine advanced analytical methods with high-content screening in zebrafish to create an integrated platform for microgram-scale, in vivo NP discovery. We use this platform for the bioassay-guided fractionation of an East African medicinal plant, Rhynchosia viscosa, resulting in the identification of both known and novel isoflavone derivatives with anti-angiogenic and anti-inflammatory activity. Quantitative microflow NMR is used both to determine the structure of bioactive compounds and to quantify them for direct dose-response experiments at the microgram scale. The key advantages of this approach are (1) the microgram scale at which both biological and analytical experiments can be performed, (2) the speed and the rationality of the bioassay-guided fractionation – generic for NP extracts of diverse origin – that requires only limited sample-specific optimization and (3) the use of microflow NMR for quantification, enabling the identification and dose-response experiments with only tens of micrograms of each compound. This study demonstrates that a complete in vivo bioassay-guided fractionation can be performed with only 20 mg of NP extract within a few days. HubMed – drug


Crystal Structures of Carbamate Kinase from Giardia lamblia Bound with Citric Acid and AMP-PNP.

PLoS One. 2013; 8(5): e64004
Lim K, Kulakova L, Galkin A, Herzberg O

The parasite Giardia lamblia utilizes the L-arginine dihydrolase pathway to generate ATP from L-arginine. Carbamate kinase (CK) catalyzes the last step in this pathway, converting ADP and carbamoyl phosphate to ATP and ammonium carbamate. Because the L-arginine pathway is essential for G. lamblia survival and absent in high eukaryotes including humans, the enzyme is a potential target for drug development. We have determined two crystal structures of G. lamblia CK (glCK) with bound ligands. One structure, in complex with a nonhydrolyzable ATP analog, adenosine 5′-adenylyl-?,?-imidodiphosphate (AMP-PNP), was determined at 2.6 Å resolution. The second structure, in complex with citric acid bound in the postulated carbamoyl phosphate binding site, was determined in two slightly different states at 2.1 and 2.4 Å resolution. These structures reveal conformational flexibility of an auxiliary domain (amino acid residues 123-170), which exhibits open or closed conformations or structural disorder, depending on the bound ligand. The structures also reveal a smaller conformational change in a region associated the AMP-PNP adenine binding site. The protein residues involved in binding, together with a model of the transition state, suggest that catalysis follows an in-line, predominantly dissociative, phosphotransfer reaction mechanism, and that closure of the flexible auxiliary domain is required to protect the transition state from bulk solvent. HubMed – drug