Targeting Nuclear Factor-Kappa B to Overcome Resistance to Chemotherapy.

Targeting Nuclear Factor-Kappa B to Overcome Resistance to Chemotherapy.

Front Oncol. 2013; 3: 120
Godwin P, Baird AM, Heavey S, Barr MP, O’Byrne KJ, Gately K

Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-?B pathway. NF-?B is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-?B has emerged as a promising anti-cancer target. Here, we describe the role of NF-?B in cancer and in?the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-?B signaling by pharmacological intervention will be addressed. HubMed – drug

 

Psychiatric Drug Development: Diagnosing a Crisis.

Cerebrum. 2013 3; 2013: 5
Hyman SE

HubMed – drug

 

Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance.

Front Microbiol. 2013; 4: 114
Hirakawa H, Tomita H

Bacteria use a cell-to-cell communication activity termed “quorum sensing” to coordinate group behaviors in a cell density dependent manner. Quorum sensing influences the expression profile of diverse genes, including antibiotic tolerance and virulence determinants, via specific chemical compounds called “autoinducers”. During quorum sensing, Gram-negative bacteria typically use an acylated homoserine lactone (AHL) called autoinducer 1. Since the first discovery of quorum sensing in a marine bacterium, it has been recognized that more than 100 species possess this mechanism of cell-to-cell communication. In addition to being of interest from a biological standpoint, quorum sensing is a potential target for antimicrobial chemotherapy. This unique concept of antimicrobial control relies on reducing the burden of virulence rather than killing the bacteria. It is believed that this approach will not only suppress the development of antibiotic resistance, but will also improve the treatment of refractory infections triggered by multi-drug resistant pathogens. In this paper, we review and track recent progress in studies on AHL inhibitors/modulators from a biological standpoint. It has been discovered that both natural and synthetic compounds can disrupt quorum sensing by a variety of means, such as jamming signal transduction, inhibition of signal production and break-down and trapping of signal compounds. We also focus on the regulatory elements that attenuate quorum sensing activities and discuss their unique properties. Understanding the biological roles of regulatory elements might be useful in developing inhibitor applications and understanding how quorum sensing is controlled. HubMed – drug

 

Non-Steroidal Anti-Inflammatory Drugs Do Not Influence the Urinary Testosterone/Epitestosterone Glucuronide Ratio.

Front Endocrinol (Lausanne). 2013; 4: 51
Lundmark J, Gårevik N, Thörngren JO, Garle M, Ekström L, Rane A, Schulze JJ

The UDP Glucuronosyl Transferase (UGT) enzymes are important in the pharmacokinetics, and conjugation, of a variety of drugs including non-steroidal anti-inflammatory drugs (NSAIDs) as well as anabolic androgenic steroids (AAS). Testosterone glucuronidation capacity is strongly associated with a deletion polymorphism in the UGT2B17 gene. As the use of high doses of NSAIDs has been observed in athletes there is a risk for a drug-drug interaction that may influence the doping tests for AAS. In vitro studies show inhibitory potential on UGT2B7, 2B15, and 2B17 enzymes by NSAIDs. The aim of this study was to investigate if concomitant use of NSAIDs and a single dose of testosterone enanthate would affect the excretion rate of testosterone and epitestosterone glucuronide (TG and EG) as well as the T/E ratio, thereby affecting the outcome of the testosterone doping test. The study was designed as an open, randomized, cross-over study with subjects being their own control. The 23 male healthy volunteers, with either two, one or no allele (ins/ins, ins/del, or del/del) of the UGT2B17 gene, received the maximum recommended dose of NSAID (Ibuprofen or Diclofenac) for 6?days. On day three, 500?mg of testosterone enanthate was administered. Spot urine samples were collected for 17?days. After a wash-out period of 4?months the volunteers received 500?mg testosterone enanthate only, with subsequent spot urine collection for 14?days. The glucuronides of testosterone and epitestosterone were quantified. NSAIDs did not affect the excretion of TG or EG before the administration of testosterone. The concomitant use of NSAIDs and testosterone slightly increased the TG excretion while the EG excretion was less suppressed compared to testosterone use only. The effects of the NSAIDs on the TG and EG excretion did not differ between the UGT2B17 genotype groups. In conclusion, the outcome of testosterone doping tests does not seem to be affected by the use of NSAIDs. HubMed – drug

 

Twenty-Four Hour Non-Invasive Ambulatory Blood Pressure and Heart Rate Monitoring in Parkinson’s Disease.

Front Neurol. 2013; 4: 49
Stuebner E, Vichayanrat E, Low DA, Mathias CJ, Isenmann S, Haensch CA

Non-motor symptoms are now commonly recognized in Parkinson’s disease (PD) and can include dysautonomia. Impairment of cardiovascular autonomic function can occur at any stage of PD but is typically prevalent in advanced stages or related to (anti-Parkinsonian) drugs and can result in atypical blood pressure (BP) readings and related symptoms such as orthostatic hypotension (OH) and supine hypertension. OH is usually diagnosed with a head-up-tilt test (HUT) or an (active) standing test (also known as Schellong test) in the laboratory, but 24?h ambulatory blood pressure monitoring (ABPM) in a home setting may have several advantages, such as providing an overview of symptoms in daily life alongside pathophysiology as well as assessment of treatment interventions. This, however, is only possible if ABPM is administrated correctly and an autonomic protocol (including a diary) is followed which will be discussed in this review. A 24-h ABPM does not only allow the detection of OH, if it is present, but also the assessment of cardiovascular autonomic dysfunction during and after various daily stimuli, such as postprandial and alcohol dependent hypotension, as well as exercise and drug induced hypotension. Furthermore, information about the circadian rhythm of BP and heart rate (HR) can be obtained and establish whether or not a patient has a fall of BP at night (i.e., “dipper” vs. non-“dipper”). The information about nocturnal BP may also allow the investigation or detection of disorders such as sleep dysfunction, nocturnal movement disorders, and obstructive sleep apnea, which are common in PD. Additionally, a 24-h ABPM should be conducted to examine the effectiveness of OH therapy. This review will outline the methodology of 24?h ABPM in PD, summarize findings of such studies in PD, and briefly consider common daily stimuli that might affect 24?h ABPM. HubMed – drug