Recapitulation of Tumor Heterogeneity and Molecular Signatures in a 3D Brain Cancer Model With Decreased Sensitivity to Histone Deacetylase Inhibition.

Recapitulation of Tumor Heterogeneity and Molecular Signatures in a 3D Brain Cancer Model with Decreased Sensitivity to Histone Deacetylase Inhibition.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2012; 7(12): e52335
Smith SJ, Wilson M, Ward JH, Rahman CV, Peet AC, Macarthur DC, Rose FR, Grundy RG, Rahman R

Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS).CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat.Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches.Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system.
HubMed – drug

 

Alpha-tocopheryl succinate inhibits autophagic survival of prostate cancer cells induced by vitamin k3 and ascorbate to trigger cell death.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2012; 7(12): e52263
Tomasetti M, Nocchi L, Neuzil J, Goodwin J, Nguyen M, Dong L, Manzella N, Staffolani S, Milanese C, Garrone B, Alleva R, Borghi B, Santarelli L, Guerrieri R

The redox-silent vitamin E analog ?-tocopheryl succinate (?-TOS) was found to synergistically cooperate with vitamin K3 (VK3) plus ascorbic acid (AA) in the induction of cancer cell-selective apoptosis via a caspase-independent pathway. Here we investigated the molecular mechanism(s) underlying cell death induced in prostate cancer cells by ?-TOS, VK3 and AA, and the potential use of targeted drug combination in the treatment of prostate cancer.The generation of ROS, cellular response to oxidative stress, and autophagy were investigated in PC3 prostate cancer cells by using drugs at sub-toxic doses. We evaluated whether PARP1-mediated apoptosis-inducing factor (AIF) release plays a role in apoptosis induced by the combination of the agents. Next, the effect of the combination of ?-TOS, VK3 and AA on tumor growth was examined in nude mice. VK3 plus AA induced early ROS formation associated with induction of autophagy in response to oxidative stress, which was reduced by ?-TOS, preventing the formation of autophagosomes. ?-TOS induced mitochondrial destabilization leading to the release of AIF. Translocation of AIF from mitochondria to the nucleus, a result of the combinatorial treatment, was mediated by PARP1 activation. The inhibition of AIF as well as of PARP1 efficiently attenuated apoptosis triggered by the drug combination. Using a mouse model of prostate cancer, the combination of ?-TOS, VK3 and AA was more efficient in tumor suppression than when the drugs were given separately, without deleterious side effects.?-TOS, a mitochondria-targeting apoptotic agent, switches at sub-apoptotic doses from autophagy-dependent survival of cancer cells to their demise by promoting the induction of apoptosis. Given the grim prognosis for cancer patients, this finding is of potential clinical relevance.
HubMed – drug

 

Current Status of Artemisinin-Resistant falciparum Malaria in South Asia: A Randomized Controlled Artesunate Monotherapy Trial in Bangladesh.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2012; 7(12): e52236
Starzengruber P, Swoboda P, Fuehrer HP, Khan WA, Hofecker V, Siedl A, Fally M, Graf O, Teja-Isavadharm P, Haque R, Ringwald P, Noedl H

Recent reports indicate that first cases of genuine artemisinin resistance have already emerged along the Thai-Cambodian border. The main objective of this trial was to track the potential emergence of artemisinin resistance in Bangladesh, which in terms of drug resistance forms a gateway to the Indian subcontinent.We conducted an open-label, randomized, controlled 42-day clinical trial in Southeastern Bangladesh to investigate the potential spread of clinical artemisinin resistance from Southeast Asia. A total of 126 uncomplicated falciparum malaria patients were randomized to one of 3 treatment arms (artesunate monotherapy with 2 or 4 mg/kg/day once daily or quinine plus doxycycline TID for 7 days). Only cases fulfilling a stringent set of criteria were considered as being artemisinin-resistant.The 28-day and 42-day cure rates in the artesunate monotherapy (2 and 4 mg/kg) and quinine/doxycyline arms were 97.8% (95% confidence interval, CI: 87.8-99.8%), 100% (95% CI: 91.1-100%), and 100% (95% CI: 83.4-100%), respectively. One case of re-infection was seen in the artesunate high dose arm, and a single case of recrudescence was observed in the low dose group on day 26. No differences in median parasite and fever clearance times were found between the 2 artesunate arms (29.8 h and 17.9 h vs. 29.5 h and 19.1 h). Not a single case fulfilled our criteria of artemisinin resistance. Parasite clearance times were considerably shorter and ex vivo results indicate significantly higher susceptibility (50% inhibitory concentration for dihydroartemisinin was 1.10 nM; 95% CI: 0.95-1.28 nM) to artemisinins as compared to SE-Asia.There is currently no indication that artemisinin resistance has reached Bangladesh. However, the fact that resistance has recently been reported from nearby Myanmar indicates an urgent need for close monitoring of artemisinin resistance in the region.ClinicalTrials.gov NCT00639873.
HubMed – drug

 

Role of the Beta catenin destruction complex in mediating chemotherapy-induced senescence-associated secretory phenotype.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2012; 7(12): e52188
Basu D, Reyes-Mugica M, Rebbaa A

Cellular senescence is considered as a tumor suppressive mechanism. Recent evidence indicates however that senescent cells secrete various growth factors and cytokines, some of which may paradoxically promote cancer progression. This phenomenon termed senescence-associated secretory phenotype (SASP) must be inhibited in order for anti-proliferative agents to be effective. The present study was designed to determine whether the ?-catenin destruction complex (BCDC), known to integrate the action of various growth factors and cytokines, would represent a suitable target to inhibit the activity of SASP components. For this, we carried out experiments to determine the effect of drug-induced senescence on secretion of SASP, ?-catenin transactivation, and the relationship between these processes. Moreover, genetic and pharmacological approaches were used to define the implication of BCDC in mediating the effects of SASP components on cell migration and resistance to drugs. The findings indicate that drug-induced senescence was associated with expression of various Wnt ligands in addition to previously known SASP components. Beta catenin transactivation and expression of genes implicated in epithelial-mesenchymal transition (EMT) also increased in response to drug-induced SASP. These effects were prevented by Pyrvinium, a recently described activator of BCDC. Pyrvinium also suppressed the effects of SASP on cell migration and resistance to doxorubicin. Together, these findings provide insights on the potential role of BCDC in mediating the effects of drug-induced SASP on cancer cell invasion and resistance to therapy, and suggest that targeting this pathway may represent an effective approach to enhance the activity of current and prospective anti-cancer therapeutics.
HubMed – drug

 

Adoptive infusion of tolerogenic dendritic cells prolongs the survival of pancreatic islet allografts: a systematic review of 13 mouse and rat studies.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2012; 7(12): e52096
Sun G, Shan J, Li Y, Zhou Y, Guo Y, Wu W, Yang T, Xia M, Feng L

The first Phase I study of autologous tolerogenic dendritic cells (Tol-DCs) in Type 1 diabetes (T1D) patients was recently completed. Pancreatic islet transplantation is an effective therapy for T1D, and infusion of Tol-DCs can control diabetes development while promoting graft survival. In this study, we aim to systematically review islet allograft survival following infusion of Tol-DCs induced by different methods, to better understand the mechanisms that mediate this process.We searched PubMed and Embase (from inception to February 29(th), 2012) for relevant publications. Data were extracted and quality was assessed by two independent reviewers. We semiquantitatively analyzed the effects of Tol-DCs on islet allograft survival using mixed leukocyte reaction, Th1/Th2 differentiation, Treg induction, and cytotoxic T lymphocyte activity as mechanisms related-outcomes. We discussed the results with respect to possible mechanisms that promote survival.Thirteen articles were included. The effects of Tol-DCs induced by five methods on allograft survival were different. Survival by each method was prolonged as follows: allopeptide-pulsed Tol-DCs (42.14±44 days), drug intervention (39 days), mesenchymal stem cell induction (23 days), genetic modification (8.99±4.75 days), and other derivation (2.61±6.98 days). The results indicate that Tol-DC dose and injection influenced graft survival. Single-dose injections of 10(4) Tol-DCs were the most effective for allograft survival, and multiple injections were not superior. Tol-DCs were also synergistic with immunosuppressive drugs or costimulation inhibitors. Possible mechanisms include donor specific T cell hyporesponsiveness, Th2 differentiation, Treg induction, cytotoxicity against allograft reduction, and chimerism induction.Tol-DCs induced by five methods prolong MHC mismatched islet allograft survival to different degrees, but allopeptide-pulsed host DCs perform the best. Immunosuppressive or costimulatory blockade are synergistic with Tol-DC on graft survival. Multiple injections are not superior to single injection. Yet more rigorously designed studies with larger sample sizes are still needed in future.
HubMed – drug

 

Find More Drug And Alcohol Rehabilitation Information…