Proton-Dependent Inhibition of the Cardiac Sodium Channel Nav1.5 by Ranolazine.

Proton-dependent inhibition of the cardiac sodium channel Nav1.5 by ranolazine.

Front Pharmacol. 2013; 4: 78
Sokolov S, Peters CH, Rajamani S, Ruben PC

Ranolazine is clinically approved for treatment of angina pectoris and is a potential candidate for antiarrhythmic, antiepileptic, and analgesic applications. These therapeutic effects of ranolazine hinge on its ability to inhibit persistent or late Na(+) currents in a variety of voltage-gated sodium channels. Extracellular acidosis, typical of ischemic events, may alter the efficiency of drug/channel interactions. In this study, we examined pH modulation of ranolazine’s interaction with the cardiac sodium channel, Nav1.5. We performed whole-cell path clamp experiments at extracellular pH 7.4 and 6.0 on Nav1.5 transiently expressed in HEK293 cell line. Consistent with previous studies, we found that ranolazine induced a stable conformational state in the cardiac sodium channel with onset/recovery kinetics and voltage-dependence resembling intrinsic slow inactivation. This interaction diminished the availability of the channels in a voltage- and use-dependent manner. Low extracellular pH impaired inactivation states leading to an increase in late Na(+) currents. Ranolazine interaction with the channel was also slowed 4-5 fold. However, ranolazine restored the voltage-dependent steady-state availability profile, thereby reducing window/persistent currents at pH 6.0 in a manner comparable to pH 7.4. These results suggest that ranolazine is effective at therapeutically relevant concentrations (10 ?M), in acidic extracellular pH, where it compensates for impaired native slow inactivation. HubMed – drug


Acetaldehyde and parkinsonism: role of CYP450 2E1.

Front Behav Neurosci. 2013; 7: 71
Vaglini F, Viaggi C, Piro V, Pardini C, Gerace C, Scarselli M, Corsini GU

The present review update the relationship between acetaldehyde (ACE) and parkinsonism with a specific focus on the role of P450 system and CYP 2E1 isozyme particularly. We have indicated that ACE is able to enhance the parkinsonism induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin able to damage the nigrostriatal dopaminergic pathway. Similarly diethyldithiocarbamate, the main metabolite of disulfiram, a drug widely used to control alcoholism, diallylsulfide (DAS) and phenylisothiocyanate also markedly enhance the toxin-related parkinsonism. All these compounds are substrate/inhibitors of CYP450 2E1 isozyme. The presence of CYP 2E1 has been detected in the dopamine (DA) neurons of rodent Substantia Nigra (SN), but a precise function of the enzyme has not been elucidated yet. By treating CYP 2E1 knockout (KO) mice with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the SN induced lesion was significantly reduced when compared with the lesion observed in wild-type animals. Several in vivo and in vitro studies led to the conclusion that CYP 2E1 may enhance the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice by increasing free radical production inside the dopaminergic neurons. ACE is a good substrate for CYP 2E1 enzyme as the other substrate-inhibitors and by this way may facilitate the susceptibility of dopaminergic neurons to toxic events. The literature suggests that ethanol and/or disulfiram may be responsible for toxic parkinsonism in human and it indicates that basal ganglia are the major targets of disulfiram toxicity. A very recent study reports that there are a decreased methylation of the CYP 2E1 gene and increased expression of CYP 2E1 mRNA in Parkinson’s disease (PD) patient brains. This study suggests that epigenetic variants of this cytochrome contribute to the susceptibility, thus confirming multiples lines of evidence which indicate a link between environmental toxins and PD. HubMed – drug


Acetaldehyde involvement in ethanol’s postabsortive effects during early ontogeny.

Front Behav Neurosci. 2013; 7: 70
March SM, Abate P, Molina JC

Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption. HubMed – drug