Prevalence of Transmitted HIV Drug Resistance in Iran Between 2010 and 2011.

Prevalence of Transmitted HIV Drug Resistance in Iran between 2010 and 2011.

PLoS One. 2013; 8(4): e61864
Jahanbakhsh F, Hattori J, Matsuda M, Ibe S, Monavari SH, Memarnejadian A, Aghasadeghi MR, Mostafavi E, Mohraz M, Jabbari H, Kamali K, Keyvani H, Azadmanesh K, Sugiura W

Drug-resistant (DR) HIV emerges during combined antiretroviral treatment (cART), creating concern about widespread transmission of DR-HIV as cART is expanded in resource-limited countries. The aim of this study was to determine the predominant HIV-1 subtypes and prevalence of transmitted DR mutations among antiretroviral-naïve patients in Iran.To monitor transmission of DR HIV, a threshold surveillance based on the world health organization (WHO) guidelines was implemented in Iran.For this HIVDR threshold surveillance study, blood samples were collected from 50 antiretroviral-naïve HIV-1-infected patients. Antiretroviral-resistant mutations were determined by sequencing HIV-1 protease, reverse transcriptase and integrase regions. The HIV-1 subtype was determined by sequencing the p17 and C2-V5 regions of the gag and env genes, respectively.Phylogenetic analyses of the sequenced regions revealed that 45 (95.7%) of 47 samples that were successfully obtained were CRF35_AD. The remaining two cases were subtype B (2.1%) and CRF01_AE (2.1%). Consistent results were obtained also from Env and Gag sequences. Regarding prevalence of transmitted DR viruses, two cases were found to harbor reverse transcriptase-inhibitor-resistant mutations (4.3%). In addition, although not in the WHO list for surveillance of transmitted mutations, 13 minor protease-inhibitor-resistant mutations listed in the International AIDS Society-USA panel of drug resistance mutations were found. No DR mutations were detected in the integrase region.Our study clarified that CRF35_AD is the major subtype among HIV-1-infected patients in Iran. According to the WHO categorization method of HIVDR threshold survey, the prevalence of transmitted drug resistant HIV in Iran was estimated as moderate (5-15%). HubMed – drug


An image analysis algorithm for malaria parasite stage classification and viability quantification.

PLoS One. 2013; 8(4): e61812
Moon S, Lee S, Kim H, Freitas-Junior LH, Kang M, Ayong L, Hansen MA

With more than 40% of the world’s population at risk, 200-300 million infections each year, and an estimated 1.2 million deaths annually, malaria remains one of the most important public health problems of mankind today. With the propensity of malaria parasites to rapidly develop resistance to newly developed therapies, and the recent failures of artemisinin-based drugs in Southeast Asia, there is an urgent need for new antimalarial compounds with novel mechanisms of action to be developed against multidrug resistant malaria. We present here a novel image analysis algorithm for the quantitative detection and classification of Plasmodium lifecycle stages in culture as well as discriminating between viable and dead parasites in drug-treated samples. This new algorithm reliably estimates the number of red blood cells (isolated or clustered) per fluorescence image field, and accurately identifies parasitized erythrocytes on the basis of high intensity DAPI-stained parasite nuclei spots and Mitotracker-stained mitochondrial in viable parasites. We validated the performance of the algorithm by manual counting of the infected and non-infected red blood cells in multiple image fields, and the quantitative analyses of the different parasite stages (early rings, rings, trophozoites, schizonts) at various time-point post-merozoite invasion, in tightly synchronized cultures. Additionally, the developed algorithm provided parasitological effective concentration 50 (EC50) values for both chloroquine and artemisinin, that were similar to known growth inhibitory EC50 values for these compounds as determined using conventional SYBR Green I and lactate dehydrogenase-based assays. HubMed – drug


Xenobiotic-Induced Hepatocyte Proliferation Associated with Constitutive Active/Androstane Receptor (CAR) or Peroxisome Proliferator-Activated Receptor ? (PPAR?) Is Enhanced by Pregnane X Receptor (PXR) Activation in Mice.

PLoS One. 2013; 8(4): e61802
Shizu R, Benoki S, Numakura Y, Kodama S, Miyata M, Yamazoe Y, Yoshinari K

Xenobiotic-responsive nuclear receptors pregnane X receptor (PXR), constitutive active/androstane receptor (CAR) and peroxisome proliferator-activated receptor ? (PPAR?) play pivotal roles in the metabolic functions of the liver such as xenobiotics detoxification and energy metabolism. While CAR or PPAR? activation induces hepatocyte proliferation and hepatocarcinogenesis in rodent models, it remains unclear whether PXR activation also shows such effects. In the present study, we have investigated the role of PXR in the xenobiotic-induced hepatocyte proliferation with or without CAR activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) and phenobarbital, or PPAR? activation by Wy-14643 in mice. Treatment with TCPOBOP or phenobarbital increased the percentage of Ki-67-positive nuclei as well as mRNA levels of cell proliferation-related genes in livers as expected. On the other hand, treatment with the PXR activator pregnenolone 16?-carbonitrile (PCN) alone showed no such effects. Surprisingly, PCN co-treatment significantly augmented the hepatocyte proliferation induced by CAR activation with TCPOBOP or phenobarbital in wild-type mice but not in PXR-deficient mice. Intriguingly, PXR activation also augmented the hepatocyte proliferation induced by Wy-14643 treatment. Moreover, PCN treatment increased the RNA content of hepatocytes, suggesting the induction of G0/G1 transition, and reduced mRNA levels of Cdkn1b and Rbl2, encoding suppressors of cell cycle initiation. Our present findings indicate that xenobiotic-induced hepatocyte proliferation mediated by CAR or PPAR? is enhanced by PXR co-activation despite that PXR activation alone does not cause the cell proliferation in mouse livers. Thus PXR may play a novel and unique role in the hepatocyte/liver hyperplasia upon exposure to xenobiotics. HubMed – drug