Novel Phenolic Inhibitors of Small/Intermediate-Conductance Ca(2+)-Activated K(+) Channels, KCa3.1 and KCa2.3.

Novel Phenolic Inhibitors of Small/Intermediate-Conductance Ca(2+)-Activated K(+) Channels, KCa3.1 and KCa2.3.

PLoS One. 2013; 8(3): e58614
Oliván-Viguera A, Valero MS, Murillo MD, Wulff H, García-Otín AL, Arbonés-Mainar JM, Köhler R

BACKGROUND: KCa3.1 channels are calcium/calmodulin-regulated voltage-independent K(+) channels that produce membrane hyperpolarization and shape Ca(2+)-signaling and thereby physiological functions in epithelia, blood vessels, and white and red blood cells. Up-regulation of KCa3.1 is evident in fibrotic and inflamed tissues and some tumors rendering the channel a potential drug target. In the present study, we searched for novel potent small molecule inhibitors of KCa3.1 by testing a series of 20 selected natural and synthetic (poly)phenols, synthetic benzoic acids, and non-steroidal anti-inflammatory drugs (NSAIDs), with known cytoprotective, anti-inflammatory, and/or cytostatic activities. METHODOLOGYPRINCIPAL FINDINGS: In electrophysiological experiments, we identified the natural phenols, caffeic acid (EC50 1.3 µM) and resveratrol (EC50 10 µM) as KCa3.1 inhibitors with moderate potency. The phenols, vanillic acid, gallic acid, and hydroxytyrosol had weak or no blocking effects. Out of the NSAIDs, flufenamic acid was moderately potent (EC50 1.6 µM), followed by mesalamine (EC50?10 µM). The synthetic fluoro-trivanillic ester, 13b ([3,5-bis[(3-fluoro-4-hydroxy-benzoyl)oxymethyl]phenyl]methyl 3-fluoro-4-hydroxy-benzoate), was identified as a potent mixed KCa2/3 channel inhibitor with an EC50 of 19 nM for KCa3.1 and 360 pM for KCa2.3, which affected KCa1.1 and Kv channels only at micromolar concentrations. The KCa3.1/KCa2-activator SKA-31 antagonized the 13b-blockade. In proliferation assays, 13b was not cytotoxic and reduced proliferation of 3T3 fibroblasts as well as caffeic acid. In isometric vessel myography, 13b increased contractions of porcine coronary arteries to serotonin and antagonized endothelium-derived hyperpolarization-mediated vasorelaxation to pharmacological KCa3.1/KCa2.3 activation. CONCLUSIONSSIGNIFICANCE: We identified the natural phenols, caffeic acid and resveratrol, the NSAID, flufenamic acid, and the polyphenol 13b as novel KCa3.1 inhibitors. The high potency of 13b with pan-activity on KCa3.1/KCa2 channels makes 13b a new pharmacological tool to manipulate inflammation and cancer growth through KCa3.1/KCa2 blockade and a promising template for new drug design. HubMed – drug


Computer-Aided Design of Fragment Mixtures for NMR-Based Screening.

PLoS One. 2013; 8(3): e58571
Arroyo X, Goldflam M, Feliz M, Belda I, Giralt E

Fragment-based drug discovery is widely applied both in industrial and in academic screening programs. Several screening techniques rely on NMR to detect binding of a fragment to a target. NMR-based methods are among the most sensitive techniques and have the further advantage of yielding a low rate of false positives and negatives. However, NMR is intrinsically slower than other screening techniques; thus, to increase throughput in NMR-based screening, researchers often assay mixtures of fragments, rather than single fragments. Herein we present a fast and straightforward computer-aided method to design mixtures of fragments taken from a library that have minimized NMR signal overlap. This approach enables direct identification of one or several active fragments without the need for deconvolution. Our approach entails encoding of NMR spectra into a computer-readable format that we call a fingerprint, and minimizing the global signal overlap through a Monte Carlo algorithm. The scoring function used favors a homogenous distribution of the global signal overlap. The method does not require additional experimental work: the only data required are NMR spectra, which are generally recorded for each compound as a quality control measure before its insertion into the library. HubMed – drug


The landscape of host transcriptional response programs commonly perturbed by bacterial pathogens: towards host-oriented broad-spectrum drug targets.

PLoS One. 2013; 8(3): e58553
Kidane YH, Lawrence C, Murali TM

The emergence of drug-resistant pathogen strains and new infectious agents pose major challenges to public health. A promising approach to combat these problems is to target the host’s genes or proteins, especially to discover targets that are effective against multiple pathogens, i.e., host-oriented broad-spectrum (HOBS) drug targets. An important first step in the discovery of such drug targets is the identification of host responses that are commonly perturbed by multiple pathogens.In this paper, we present a methodology to identify common host responses elicited by multiple pathogens. First, we identified host responses perturbed by each pathogen using a gene set enrichment analysis of publicly available genome-wide transcriptional datasets. Then, we used biclustering to identify groups of host pathways and biological processes that were perturbed only by a subset of the analyzed pathogens. Finally, we tested the enrichment of each bicluster in human genes that are known drug targets, on the basis of which we elicited putative HOBS targets for specific groups of bacterial pathogens. We identified 84 up-regulated and three down-regulated statistically significant biclusters. Each bicluster contained a group of pathogens that commonly dysregulated a group of biological processes. We validated our approach by checking whether these biclusters correspond to known hallmarks of bacterial infection. Indeed, these biclusters contained biological process such as inflammation, activation of dendritic cells, pro- and anti- apoptotic responses and other innate immune responses. Next, we identified biclusters containing pathogens that infected the same tissue. After a literature-based analysis of the drug targets contained in these biclusters, we suggested new uses of the drugs Anakinra, Etanercept, and Infliximab for gastrointestinal pathogens Yersinia enterocolitica, Helicobacter pylori kx2 strain, and enterohemorrhagic Escherichia coli and the drug Simvastatin for hematopoietic pathogen Ehrlichia chaffeensis.Using a combination of automated analysis of host-response gene expression data and manual study of the literature, we have been able to suggest host-oriented treatments for specific bacterial infections. The analyses and suggestions made in this study may be utilized to generate concrete hypothesis on which gene sets to probe further in the quest for HOBS drug targets for bacterial infections. All our results are available at the following supplementary website: murali/supplements/2013-kidane-plos-one. HubMed – drug


Comparative cardiac toxicity of anthracyclines in vitro and in vivo in the mouse.

PLoS One. 2013; 8(3): e58421
Toldo S, Goehe RW, Lotrionte M, Mezzaroma E, Sumner ET, Biondi-Zoccai GG, Seropian IM, Van Tassell BW, Loperfido F, Palazzoni G, Voelkel NF, Abbate A, Gewirtz DA

The antineoplastic efficacy of anthracyclines is limited by their cardiac toxicity. In this study, we evaluated the toxicity of doxorubicin, non-pegylated liposomal-delivered doxorubicin, and epirubicin in HL-1 adult cardiomyocytes in culture as well as in the mouse in vivo.The cardiomyocytes were incubated with the three anthracyclines (1 µM) to assess reactive oxygen generation, DNA damage and apoptotic cell death. CF-1 mice (10/group) received doxorubicin, epirubicin or non-pegylated liposomal-doxorubicin (10 mg/kg) and cardiac function was monitored by Doppler echocardiography to measure left ventricular ejection fraction (LVEF), heart rate (HR) and cardiac output (CO) both prior to and 10 days after drug treatment.In HL-1 cells, non-pegylated liposomal-doxorubicin generated significantly less reactive oxygen species (ROS), as well as less DNA damage and apoptosis activation when compared with doxorubicin and epirubicin. Cultured breast tumor cells showed similar sensitivity to the three anthracyclines. In the healthy mouse, non-pegylated liposomal doxorubicin showed a minimal and non-significant decrease in LVEF with no change in HR or CO, compared to doxorubicin and epirubicin.This study provides evidence for reduced cardiac toxicity of non-pegylated-liposomal doxorubicin characterized by attenuation of ROS generation, DNA damage and apoptosis in comparison to epirubicin and doxorubicin. HubMed – drug


Anti-angiogenic and anti-metastatic activity of synthetic phosphoethanolamine.

PLoS One. 2013; 8(3): e57937
Ferreira AK, Freitas VM, Levy D, Ruiz JL, Bydlowski SP, Rici RE, Filho OM, Chierice GO, Maria DA

BACKGROUND: Renal cell carcinoma (RCC) is the most common type of kidney cancer, and represents the third most common urological malignancy. Despite the advent of targeted therapies for RCC and the improvement of the lifespan of patients, its cost-effectiveness restricted the therapeutic efficacy. In a recent report, we showed that synthetic phosphoethanolamine (Pho-s) has a broad antitumor activity on a variety of tumor cells and showed potent inhibitor effects on tumor progress in vivo. METHODOLOGYPRINCIPAL FINDINGS: We show that murine renal carcinoma (Renca) is more sensitive to Pho-s when compared to normal immortalized rat proximal tubule cells (IRPTC) and human umbilical vein endothelial cells (HUVEC). In vitro anti-angiogenic activity assays show that Pho-s inhibits endothelial cell proliferation, migration and tube formation. In addition, Pho-s has anti-proliferative effects on HUVEC by inducing a cell cycle arrest at the G2/M phase. It causes a decrease in cyclin D1 mRNA, VEGFR1 gene transcription and VEGFR1 receptor expression. Pho-s also induces nuclear fragmentation and affects the organization of the cytoskeleton through the disruption of actin filaments. Additionally, Pho-s induces apoptosis through the mitochondrial pathway. The putative therapeutic potential of Pho-s was validated in a renal carcinoma model, on which our remarkable in vivo results show that Pho-s potentially inhibits lung metastasis in nude mice, with a superior efficacy when compared to Sunitinib. CONCLUSIONSSIGNIFICANCE: Taken together, our findings provide evidence that Pho-s is a compound that potently inhibits lung metastasis, suggesting that it is a promising novel candidate drug for future developments. HubMed – drug