MCH and Apomorphine in Combination Enhance Action Potential Firing of Nucleus Accumbens Shell Neurons in Vitro.

MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro.

Peerj. 2013; 1: e61
Hopf FW, Seif T, Chung S, Civelli O

The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a) showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell), a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition. HubMed – addiction

 

Repeated cocaine exposure facilitates the expression of incentive motivation and induces habitual control in rats.

PLoS One. 2013; 8(4): e61355
Leblanc KH, Maidment NT, Ostlund SB

There is growing evidence that mere exposure to drugs can induce long-term alterations in the neural systems that mediate reward processing, motivation, and behavioral control, potentially causing the pathological pursuit of drugs that characterizes the addicted state. The incentive sensitization theory proposes that drug exposure potentiates the influence of reward-paired cues on behavior. It has also been suggested that drug exposure biases action selection towards the automatic execution of habits and away from more deliberate goal-directed control. The current study investigated whether rats given repeated exposure to peripherally administered cocaine would show alterations in incentive motivation (assayed using the Pavlovian-to-instrumental transfer (PIT) paradigm) or habit formation (assayed using sensitivity to reward devaluation). After instrumental and Pavlovian training for food pellet rewards, rats were given 6 daily injections of cocaine (15 mg/kg, IP) or saline, followed by a 10-d period of rest. Consistent with the incentive sensitization theory, cocaine-treated rats showed stronger cue-evoked lever pressing than saline-treated rats during the PIT test. The same rats were then trained on a new instrumental action with a new food pellet reward before undergoing a reward devaluation testing. Although saline-treated rats exhibited sensitivity to reward devaluation, indicative of goal-directed performance, cocaine-treated rats were insensitive to this treatment, suggesting a reliance on habitual processes. These findings, when taken together, indicate that repeated exposure to cocaine can cause broad alterations in behavioral control, spanning both motivational and action selection processes, and could therefore help explain aberrations of decision-making that underlie drug addiction. HubMed – addiction

 

Dynamical Reorganization of Synchronous Activity Patterns in Prefrontal Cortex-Hippocampus Networks During Behavioral Sensitization.

Cereb Cortex. 2013 May 3;
Ahn S, Rubchinsky LL, Lapish CC

Neural synchrony exhibits temporal variability and, therefore, the temporal patterns of synchronization and desynchronization may have functional relevance. This study employs novel time-series analysis to explore how neural signals become transiently phase locked and unlocked in the theta frequency band in prefrontal cortex and hippocampus of awake, behaving rats during repeated injections of the psychostimulant, d-Amphetamine (AMPH). Short (but frequent) desynchronized events dominate synchronized dynamics in each of the animals we examined. After the first AMPH injection, only increases in the relative prevalence of short desynchronization episodes (but not in average synchrony strength) were significant. Throughout sensitization, both strength and the fine temporal structure of synchrony (measured as the relative prevalence of short desynchronizations) were similarly altered with AMPH injections, with each measure decreasing in the preinjection epoch and increasing after injection. Sensitization also induced decoupling between locomotor activity and synchrony. The increase in numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) in AMPH-treated animals may indicate that synchrony is easy to form yet easy to break. These data yield a novel insight into how synchrony is dynamically altered in cortical networks by AMPH and identify neurophysiological changes that may be important to understand the behavioral pathologies of addiction. HubMed – addiction

 


 

Drug Alcohol Treatment Center in California – drug “free drug rehab” “teen drug rehab” “holistic drug rehab” “drug rehab programs” “drug addiction rehab” “inpatient drug rehab” “drug rehab treatment” “dr…