Human rElafin Inhibits HIV-1 Replication in Its Natural Target Cells.

Human rElafin Inhibits HIV-1 Replication in Its Natural Target Cells.

Biores Open Access. 2013 Apr; 2(2): 128-137
Jasinghe VJ, Peyrotte EA, Meyers AF, Gajanayaka N, Ball TB, Sandstrom P, Lavigne C

Trappin-2/elafin is a novel innate immune factor that belongs to the serine protease inhibitor family and has known antibacterial, antifungal, and antiviral properties. In this study, we further investigated the anti-HIV activity of elafin using different cellular models and both X4- and R5-HIV-1 laboratory strains. We compared the antiviral activity of human recombinant elafin (rElafin) with three well-known antiretroviral drugs, AZT, tenofovir, and enfuvirtide. We have found that when the virus is pre-incubated with rElafin prior to the infection of the cells, HIV-1 replication is significantly inhibited. In target T cells and human peripheral blood mononuclear cells, maximal inhibition was achieved using submicromolar concentrations, and rElafin was found to be as potent as enfuvirtide, showing its potential for therapeutic application. We also show data on the mechanism of the antiviral activity of rElafin. We have demonstrated that rElafin neither binds to CD4, CXCR4, or CCR5 host cell receptors, nor to the viral glycoproteins gp120 and gp41. Furthermore, in our cell-to-cell fusion assays, in contrast to enfuvirtide, rElafin failed to block cell fusion. Altogether our results indicate that rElafin interferes with HIV replication at the early steps of its cycle but with a different mechanism of action than enfuvirtide. This study provides the first experimental evidence that elafin inhibits HIV replication in its natural target cells; therefore, elafin might have potential for its development as a new anti-HIV drug or microbicide. HubMed – drug


Mastocytosis: a paradigmatic example of a rare disease with complex biology and pathology.

Am J Cancer Res. 2013; 3(2): 159-172
Valent P

Mastocytosis is a rare disease characterized by abnormal expansion and accumulation of tissue mast cells (MC) in one or multiple organs. In most adult patients, systemic mastocytosis (SM) is diagnosed. Based on histopathological findings and organ damage, SM is divided into indolent SM (ISM), smoldering SM (SSM), SM with an associated hematologic non-MC-lineage disease (SM-AHNMD), aggressive SM (ASM), and MC leukemia (MCL). The clinical course and prognosis vary greatly among these groups of patients. In all variants of SM and most patients, neoplastic cells display the KIT mutation D816V. This suggests that additional KIT-independent molecular defects cause progression. Indeed, additional oncogenic lesions, including RAS- and TET2 mutations, have recently been identified in advanced SM. In patients with SM-AHNMD, such additional lesions are often detectable in the ‘AHNMD-component’ of the disease. Clinically relevant symptoms of SM result from i) malignant MC infiltration and the subsequent organ damage seen in advanced SM and/or ii) the release of pro-inflammatory and vasoactive mediators from MC, found in all disease-variants. Therapy of SM has to be adjusted to the individual situation in each patient. In ISM, the aim is to control mediator release and mediator effects. In advanced SM, a major goal is to control MC expansion by using conventional drugs or novel targeted drugs directed against mutant forms of KIT and/or other pro-oncogenic kinase-targets. In rapidly progressing ASM, MCL and drug-resistant AHNMD, chemotherapy and subsequent stem cell transplantation has to be considered. HubMed – drug


High Content Analysis of Primary Macrophages Hosting Proliferating Leishmania Amastigotes: Application to Anti-leishmanial Drug Discovery.

PLoS Negl Trop Dis. 2013 Apr; 7(4): e2154
Aulner N, Danckaert A, Rouault-Hardoin E, Desrivot J, Helynck O, Commere PH, Munier-Lehmann H, Späth GF, Shorte SL, Milon G, Prina E

Human leishmaniases are parasitic diseases causing severe morbidity and mortality. No vaccine is available and numerous factors limit the use of current therapies. There is thus an urgent need for innovative initiatives to identify new chemotypes displaying selective activity against intracellular Leishmania amastigotes that develop and proliferate inside macrophages, thereby causing the pathology of leishmaniasis.We have developed a biologically sound High Content Analysis assay, based on the use of homogeneous populations of primary mouse macrophages hosting Leishmania amazonensis amastigotes. In contrast to classical promastigote-based screens, our assay more closely mimics the environment where intracellular amastigotes are growing within acidic parasitophorous vacuoles of their host cells. This multi-parametric assay provides quantitative data that accurately monitors the parasitic load of amastigotes-hosting macrophage cultures for the discovery of leishmanicidal compounds, but also their potential toxic effect on host macrophages. We validated our approach by using a small set of compounds of leishmanicidal drugs and recently published chemical entities. Based on their intramacrophagic leishmanicidal activity and their toxicity against host cells, compounds were classified as irrelevant or relevant for entering the next step in the drug discovery pipeline.Our assay represents a new screening platform that overcomes several limitations in anti-leishmanial drug discovery. First, the ability to detect toxicity on primary macrophages allows for discovery of compounds able to cross the membranes of macrophage, vacuole and amastigote, thereby accelerating the hit to lead development process for compounds selectively targeting intracellular parasites. Second, our assay allows discovery of anti-leishmanials that interfere with biological functions of the macrophage required for parasite development and growth, such as organelle trafficking/acidification or production of microbicidal effectors. These data thus validate a novel phenotypic screening assay using virulent Leishmania amastigotes growing inside primary macrophage to identify new chemical entities with bona fide drug potential. HubMed – drug


Introgressive Hybridization of Schistosoma haematobium Group Species in Senegal: Species Barrier Break Down between Ruminant and Human Schistosomes.

PLoS Negl Trop Dis. 2013 Apr; 7(4): e2110
Webster BL, Diaw OT, Seye MM, Webster JP, Rollinson D

Schistosomes are dioecious parasitic flatworms, which live in the vasculature of their mammalian definitive hosts. They are the causative agent of schistosomiasis, a disease of considerable medical and veterinary importance in tropical and subtropical regions. Schistosomes undergo a sexual reproductive stage within their mammalian host enabling interactions between different species, which may result in hybridization if the species involved are phylogenetically close. In Senegal, three closely related species in the Schistosoma haematobium group are endemic: S. haematobium, which causes urogenital schistosomiasis in humans, and S. bovis and S. curassoni, which cause intestinal schistosomiasis in cows, sheep and goats.Large-scale multi-loci molecular analysis of parasite samples collected from children and domestic livestock across Senegal revealed that interactions and hybridization were taking place between all three species. Evidence of hybridization between S. haematobium/S. curassoni and S. haematobium/S. bovis was commonly found in children from across Senegal, with 88% of the children surveyed in areas of suspected species overlap excreting hybrid miracidia. No S. haematobium worms or hybrids thereof were found in ruminants, although S. bovis and S. curassoni hybrid worms were found in cows. Complementary experimental mixed species infections in laboratory rodents confirmed that males and females of each species readily pair and produce viable hybrid offspring.THESE DATA PROVIDE INDISPUTABLE EVIDENCE FOR: the high occurrence of bidirectional hybridization between these Schistosoma species; the first conclusive evidence for the natural hybridisation between S. haematobium and S. curassoni; and demonstrate that the transmission of the different species and their hybrids appears focal. Hybridization between schistosomes has been known to influence the disease epidemiology and enhance phenotypic characteristics affecting transmission, morbidity and drug sensitivity. Therefore, understanding and monitoring such inter-species interactions will be essential for optimizing and evaluating control strategies across such potential hybrid zones. HubMed – drug