Human Fc Receptor-Like 5 Binds Intact IgG via Mechanisms Distinct From Those of Fc Receptors.

Human Fc Receptor-Like 5 Binds Intact IgG via Mechanisms Distinct from Those of Fc Receptors.

J Immunol. 2013 Apr 24;
Franco A, Damdinsuren B, Ise T, Dement-Brown J, Li H, Nagata S, Tolnay M

Fc receptor-like (FCRL) 5 regulates B cell Ag receptor signaling and has been reported to bind aggregated IgG. Using surface plasmon resonance, we analyzed the interaction of native IgG samples with FCRL5, revealing a complex binding mechanism, where isotype is just one factor. FCRL5 bound IgG1 and IgG4 with ?1 ?M KD, whereas the interaction with IgG3 was a magnitude weaker. However, IgG2 samples displayed a wide range of affinities, indicating that additional factors affect binding. We used a panel of 19 anti-FCRL5 mAbs with defined reactivity to identify domains involved in ligand binding. Six mAbs blocked IgG binding, indicating critical roles of FCRL5 domains 1 and 3, as well as epitopes at the domain 1/2 and domain 2/3 boundaries. We found that only glycosylated IgG containing both Fab arms and the Fc region bound with high affinity. Furthermore, the presence of sialic acid in the IgG carbohydrate altered FCRL5 binding. The interaction of IgG and FCRL5 consisted of two kinetic components, suggesting a complex binding mechanism. We established that the IgG-Fc and IgG-F(ab’)2 fragments bind FCRL5 independently but with low affinity, revealing the mechanism behind the two-step binding of whole IgG. This complex binding mechanism is distinct from that of Fc receptors, which bind through the Fc. We propose that FCRL5 is a new type of receptor that recognizes intact IgG, possibly enabling B cells to sense Ig quality. Recognition of undamaged IgG molecules by FCRL5 could allow B cells to engage recently produced Abs. HubMed – drug


Signals through the Striatopallidal Indirect Pathway Stop Movements by Phasic Excitation in the Substantia Nigra.

J Neurosci. 2013 Apr 24; 33(17): 7583-7594
Sano H, Chiken S, Hikida T, Kobayashi K, Nambu A

The striatum and subthalamic nucleus (STN) are the input stations of the basal ganglia and receive excitatory afferents from the cerebral cortex. The basal ganglia control voluntary movements through three parallel pathways mediated by the input stations: the hyperdirect pathway, which conveys direct cortical inputs to the substantia nigra pars reticulata (SNr), the output nucleus, through the STN; the direct pathway, which arises from striatal neurons expressing dopamine D1 receptors and projects to the SNr; and the indirect pathway, which arises from striatal neurons expressing dopamine D2 receptors (D2Rs) and projects indirectly to the SNr by way of the globus pallidus (GP) and STN. Our previous study showed that immunotoxin-mediated cell targeted ablation of D2R-expressing striatal neurons in mice induced motor hyperactivity. To elucidate the mechanism underlying the hyperactivity, here we examined neuronal activity in the GP and SNr. The ablation of D2R-expressing striatal neurons had little effect on spontaneous activity in the GP and SNr, but induced dramatic changes in the cortically evoked triphasic response composed of early excitation, inhibition, and late excitation in the GP and SNr (i.e., reduced inhibition in the GP, and reduced late excitation in the GP and SNr). In contrast, the ablation of striatal cholinergic interneurons, which also express D2Rs, did not show such effects. Therefore, the reduction of the cortically evoked late excitation in the SNr seems to be responsible for hyperactivity. These observations suggest that phasic late excitation in the SNr through the striatopallidal indirect pathway plays a key role in stopping movements. HubMed – drug