Histone Acetylation-Mediated Regulation of the Hippo Pathway.

Histone acetylation-mediated regulation of the hippo pathway.

PLoS One. 2013; 8(5): e62478
Basu D, Reyes-Múgica M, Rebbaa A

The Hippo pathway is a signaling cascade recently found to play a key role in tumorigenesis therefore understanding the mechanisms that regulate it should open new opportunities for cancer treatment. Available data indicate that this pathway is controlled by signals from cell-cell junctions however the potential role of nuclear regulation has not yet been described. Here we set out to verify this possibility and define putative mechanism(s) by which it might occur. By using a luciferase reporter of the Hippo pathway, we measured the effects of different nuclear targeting drugs and found that chromatin-modifying agents, and to a lesser extent certain DNA damaging drugs, strongly induced activity of the reporter. This effect was not mediated by upstream core components (i.e. Mst, Lats) of the Hippo pathway, but through enhanced levels of the Hippo transducer TAZ. Investigation of the underlying mechanism led to the finding that cancer cell exposure to histone deacetylase inhibitors induced secretion of growth factors and cytokines, which in turn activate Akt and inhibit the GSK3 beta associated protein degradation complex in drug-affected as well as in their neighboring cells. Consequently, expression of EMT genes, cell migration and resistance to therapy were induced. These processes were suppressed by using pyrvinium, a recently described small molecule activator of the GSK 3 beta associated degradation complex. Overall, these findings shed light on a previously unrecognized phenomenon by which certain anti-cancer agents may paradoxically promote tumor progression by facilitating stabilization of the Hippo transducer TAZ and inducing cancer cell migration and resistance to therapy. Pharmacological targeting of the GSK3 beta associated degradation complex may thus represent a unique approach to treat cancer. HubMed – drug


Validation of an Excretory/Secretory Antigen Based-Elisa for the Diagnosis of Opisthorchis felineus Infection in Humans from Low Trematode Endemic Areas.

PLoS One. 2013; 8(5): e62267
Gómez-Morales MA, Ludovisi A, Amati M, Pozio E

Since opisthorchiasis does not show pathognomonic signs or symptoms, physicians can have serious problems to make a differential diagnosis of this infection in non endemic areas, in particular when there is a simultaneous occurrence with other seasonal infections. Moreover, symptomatic infections due to O. felineus can last a few weeks and then the signs and symptoms disappear, but the worms survive in the bile ducts for years causing hepatobiliary diseases including hepatomegaly, cholangitis, fibrosis of the periportal system, cholecystitis, and gallstones. Consequently, an early diagnosis prevents chronicity and loss of working days. The detection of specific antibodies has been considered as a complementary tool to the fecal examination to establish the definitive diagnosis of this infection and for the follow up. Therefore the aim of this work was the development and validation of an enzyme-linked immunosorbent assay (ELISA) using excretory/secretory antigens (ESA) from O. felineus adult worms to detect anti-Opisthorchis IgG in human sera. A total of 370 human sera were tested: 144 sera from persons with a confirmed diagnosis of opisthorchiasis, 110 sera from healthy Italian people, and 116 sera from people with other parasitic or non-parasitic infections. Results were analyzed by receiver-operator characteristic (ROC) curve analysis. The accuracy of the test, calculated by the area under curve (AUC), yielded a 0.999 value, indicating the high performance of the test. The sensitivity was 100% (95% CI: 97.40% to 100%) and no false-negative sera were detected; the specificity was 99.09% (95% CI: 95.02% to 99.83%). The validated ELISA shows a good performance in terms of sensitivity, repeatability and reproducibility, and it is suitable to detect anti-Opisthorchis IgG in human sera for diagnostic purposes and for the follow up to assess the efficacy of drug treatment. HubMed – drug


Amelioration of IFN-? and TNF-?-Induced Intestinal Epithelial Barrier Dysfunction by Berberine via Suppression of MLCK-MLC Phosphorylation Signaling Pathway.

PLoS One. 2013; 8(5): e61944
Cao M, Wang P, Sun C, He W, Wang F

Intestinal barrier dysfunction occurs in many intestinal diseases, in which proinflammatory cytokines play critical roles. However, researchers are still on the way to defining the underlying mechanisms and to evaluate therapeutic strategies for restoring intestinal barrier function. Berberine, a drug that has clinically been used to treat gastroenteritis and diarrhea for thousands of years, has been shown to protect barrier function in both endothelial and epithelial cells, but the mechanisms are completely unknown. In this study, we investigate the protective actions of berberine on barrier function and the underlying mechanisms in Caco-2 monolayers challenged with IFN-? and TNF-?. Caco-2 monolayers were treated without or with simultaneous IFN-? and TNF-? in the absence or presence of berberine. Both transepithelial electrical resistance (TER) and paracellular permeability were measured to evaluate barrier function. The expression and distribution of tight junction proteins ZO-1, occluding, and claudin-1 were respectively analyzed by immunoblot or immunofluorescence. The expressions of phosphorylated myosin light chain (pMLC), MLC kinase (MLCK) and hypoxia-inducible factor-1? (HIF-1?) were determined by immunoblot. The translocation of NF-?B p65 to nuclei was analyzed by immunofluorescence and immunoblot, respectively. The results showed that berberine significantly attenuated TER decrease and paracellular permeability increase in Caco-2 monolayers treated with IFN-? and TNF-?. Berberine also dramatically alleviated IFN-? and TNF-?-induced morphological alteration of tight junction proteins ZO-1, occluding, and claudin-1. The increase of both MLC phosphorylation and MLCK protein expression induced by IFN-? and TNF-? was significantly inhibited by berberine treatment. Additionally, berberine suppressed the activation of HIF-1?, but not NF-?B. Taken together, it is suggested that berberine attenuates IFN-? and TNF-?-induced intestinal epithelial barrier dysfunction by inhibiting the signaling pathway of MLCK-dependent MLC phosphorylation mediated by HIF-1?. HubMed – drug


Transcriptomic and Proteomic Responses of Sweetpotato Whitefly, Bemisia tabaci, to Thiamethoxam.

PLoS One. 2013; 8(5): e61820
Yang N, Xie W, Yang X, Wang S, Wu Q, Li R, Pan H, Liu B, Shi X, Fang Y, Xu B, Zhou X, Zhang Y

The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests. Although it has developed resistance to many registered insecticides including the neonicotinoid insecticide thiamethoxam, the mechanisms that regulate the resistance are poorly understood. To understand the molecular basis of thiamethoxam resistance, “omics” analyses were carried out to examine differences between resistant and susceptible B. tabaci at both transcriptional and translational levels.A total of 1,338 mRNAs and 52 proteins were differentially expressed between resistant and susceptible B. tabaci. Among them, 11 transcripts had concurrent transcription and translation profiles. KEGG analysis mapped 318 and 35 differentially expressed genes and proteins, respectively, to 160 and 59 pathways (p<0.05). Thiamethoxam treatment activated metabolic pathways (e.g., drug metabolism), in which 118 transcripts were putatively linked to insecticide resistance, including up-regulated glutathione-S-transferase, UDP glucuronosyltransferase, glucosyl/glucuronosyl transferase, and cytochrome P450. Gene Ontology analysis placed these genes and proteins into protein complex, metabolic process, cellular process, signaling, and response to stimulus categories. Quantitative real-time PCR analysis validated "omics" response, and suggested a highly overexpressed P450, CYP6CX1, as a candidate molecular basis for the mechanistic study of thiamethoxam resistance in whiteflies. Finally, enzymatic activity assays showed elevated detoxification activities in the resistant B. tabaci.This study demonstrates the applicability of high-throughput omics tools for identifying molecular candidates related to thiamethoxam resistance in an agricultural important insect pest. In addition, transcriptomic and proteomic analyses provide a solid foundation for future functional investigations into the complex molecular mechanisms governing the neonicotinoid resistance in whiteflies. HubMed – drug