Drug and Alcohol Rehabilitation: Ocular Insert for Sustained Delivery of Gatifloxacin Sesquihydrate: Preparation and Evaluations.

Ocular insert for sustained delivery of gatifloxacin sesquihydrate: Preparation and evaluations.

Filed under: Drug and Alcohol Rehabilitation

Int J Pharm Investig. 2012 Apr; 2(2): 70-7
Khurana G, Arora S, Pawar PK

Many polymeric systems have been used to fabricate ocular inserts for improve ocular bioavailability and retention to drug of which matrix systems have shown advantages of reduce dosing frequency and increased corneal residence time. The objective of the present investigation was to prepare and evaluate ocular inserts of gatifloxacin.Ocular insert was made from an aqueous dispersion of gatifloxacin, sodium alginate, polyvinyl alcohol, and glycerin by solvent casting method. Ocular insert (5.5 mm) was cross-linked by CaCl(2) and was coated with Eudragit RL-100 or Eudragit RS-100. The ocular inserts were characterized for thickness; uniformity of weight, drug content uniformity, % moisture absorption or moisture loss, and surface pH. The in vitro diffusion studies were carried out by putting insert on Millipore membrane filter (0.8 ?m) fixed between donor and receptor compartment of an all glass modified Franz diffusion cell.The thickness and drug content of ocular insert were found in the range of 0.11 ± 0.003 to 0.24 ± 0.010 mm and 0.718 ± 0.002 to 0.867 ± 0.007 mg, respectively. The surface pH, % moisture absorption or moisture loss and weight variation values were obtained in satisfactory range. The cross-linked ocular insert coated with Eudragit RL-100 shows maximum drug permeation i.e. 89.53 % ± 0.43 at 11 h. The stability studies suggest that all ocular insert remained stable, showed lesser degradation rate and maximum shelf life.Ocular inserts of gatifloxacin were prepared successfully by using solvent casting method for sustained drug delivery. The cross-linked and Eudragit RL-100 coated ocular insert of gatifloxacin provides better in vitro drug release and sustained upto 11 h.
HubMed – drug

 

Isolation and characterization of jackfruit mucilage and its comparative evaluation as a mucoadhesive and controlled release component in buccal tablets.

Filed under: Drug and Alcohol Rehabilitation

Int J Pharm Investig. 2012 Apr; 2(2): 61-9
Sabale V, Patel V, Paranjape A

The purpose of the present research work was to extract jackfruit mucilage, use it as a mucoadhesive agent, and to develop extended release buccoadhesive tablets with an intention to avoid hepatic first-pass metabolism, by enhancing residence time in the buccal cavity.The mucilage was isolated from the jackfruit pulp by the aqueous extraction method and characterized for various physiochemical parameters as well as for its adhesive properties. Three batches of tablets were prepared (wet granulation method) and evaluated containing three mucoadhesive components: Methocel K4M, Carbopol 974P, and isolated jackfruit mucilage using chlorpheniramine maleate (CPM) as a model drug and changing the proportion of the mucoadhesive component (1:2:3), resulting in nine different formulations.The results of the study indicate that the isolated mucilage had good physicochemical and morphological characteristics, granules and tablets conformed to the Pharmacopoeial specifications, and in vitro release studies showed the sustained action of drug with increasing concentration of the isolated natural mucoadhesive agent in the formulations. Permeability studies indicated that changing the mucoadhesive component, permeability behavior was not statistically different (P > 0.05). FTIR and UV spectroscopy studies between mucilage and CPM suggested the absence of a chemical interaction between CPM and jackfruit mucilage.The developed mucoadhesive tablets for buccal administration containing natural mucilage (MF3) have a potential for the sustained action of drug release. Thus, mucoadhesive tablets for controlled release were successfully developed using natural jackfruit mucilage.
HubMed – drug

 

Stimuli sensitive hydrogels for ophthalmic drug delivery: A review.

Filed under: Drug and Alcohol Rehabilitation

Int J Pharm Investig. 2012 Apr; 2(2): 54-60
Kushwaha SK, Saxena P, Rai A

Amongst the various routes of drug delivery, the field of ocular drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist for past 10-20 years. As an isolated organ, eye is very difficult to study from a drug delivery point of view. Despite this limitation, improvements have been made with the objective of maintaining the drug in the biophase for an extended period. A major problem in ocular therapeutics is the attainment of an optimal drug concentration at the site of action. To achieve effective ophthalmic therapy, an adequate amount of active ingredient must be delivered and maintained within the eye. The most frequently used dosage forms, i.e., eye solution, eye ointments, eye gels, and eye suspensions are compromised in their effectiveness by several limitations leading to poor ocular bioavailability. Ophthalmic use of viscosity-enhancing agents, penetration enhancers, cyclodextrins, prodrug approaches, and ocular inserts, and the ready existing drug carrier systems along with their application to ophthalmic drug delivery are common to improve ocular bioavailability. Amongst these hydrogel (stimuli sensitive) systems are important, which undergo reversible volume and/or sol-gel phase transitions in response to physiological (temperature, pH and present of ions in organism fluids, enzyme substrate) or other external (electric current, light) stimuli. They help to increase in precorneal residence time of drug to a sufficient extent that an ocularly delivered drug can exhibit its maximum biological action. The concept of this innovative ophthalmic delivery approach is to decrease the systemic side effects and to create a more pronounced effect with lower doses of the drug. The present article describes the advantages and use stimuli sensitive of hydrogel systems in ophthalmic drug delivery.
HubMed – drug

 

Emerging therapeutic options for myelofibrosis: a Canadian perspective.

Filed under: Drug and Alcohol Rehabilitation

Am J Blood Res. 2012; 2(3): 170-86
Gupta V, Foltz L, Sirhan S, Busque L, Turner AR

Myelofibrosis (MF) is a clonal stem cell disorder characterized by cytopenias, splenomegaly, marrow fibrosis, and systemic symptoms due to elevated inflammatory cytokines. MF is associated with decreased survival. The quality of life of patients with MF is similar to other advanced malignancies. Allogeneic hematopoietic cell transplantation is a curative treatment, but is applicable to a minority of patients with MF. None of the conventional therapies are known to alter the natural history of the disease. Significant progress has been made in the last few years in the understanding of disease biology of MF. Discovery of the JAK2V617F mutation paved the way for drug discovery in MF, and the first JAK1/2 inhibitor, ruxolitinib, has been approved by FDA and Health Canada. Several other JAK1/2 inhibitors are at various stages of clinical development. As a consequence, the therapeutic landscape of MF is changing from a disease where no effective therapies existed to one with several novel treatment options on the horizon. In this report, we assess the changing therapeutic options for MF, and critically analyze the position of novel treatments in the current armamentarium.
HubMed – drug

 

More Drug And Alcohol Rehabilitation Information…