Characterization of Bladder Selectivity of Antimuscarinic Agents on the Basis of in Vivo Drug-Receptor Binding.

Characterization of bladder selectivity of antimuscarinic agents on the basis of in vivo drug-receptor binding.

Filed under: Drug and Alcohol Rehabilitation

Int Neurourol J. 2012 Sep; 16(3): 107-15
Yamada S, Kuraoka S, Osano A, Ito Y

The in vivo muscarinic receptor binding of antimuscarinic agents (oxybutynin, solifenacin, tolterodine, and imidafenacin) used to treat urinary dysfunction in patients with overactive bladder is reviewed. Transdermal administration of oxybutynin in rats leads to significant binding of muscarinic receptors in the bladder without long-term binding in the submaxillary gland and the abolishment of salivation evoked by oral oxybutynin. Oral solifenacin shows significant and long-lasting binding to muscarinic receptors in mouse tissues expressing the M(3) subtype. Oral tolterodine binds more selectively to muscarinic receptors in the bladder than in the submaxillary gland in mice. The muscarinic receptor binding of oral imidafenacin in rats is more selective and longer-lasting in the bladder than in other tissues such as the submaxillary gland, heart, colon, lung, and brain, suggesting preferential muscarinic receptor binding in the bladder. In vivo quantitative autoradiography with (+)N-[(11)C]methyl-3-piperidyl benzilate in rats shows significant occupancy of brain muscarinic receptors with the intravenous injection of oxybutynin, solifenacin, and tolterodine. The estimated in vivo selectivity in brain is significantly greater for solifenacin and tolterodine than for oxybutynin. Imidafenacin occupies few brain muscarinic receptors. Similar findings for oral oxybutynin were observed with positron emission tomography in conscious rhesus monkeys with a significant disturbance of short-term memory. The newer generation of antimuscarinic agents may be advantageous in terms of bladder selectivity after systemic administration.
HubMed – drug

 

Performance and safety of praziquantel for treatment of intestinal schistosomiasis in infants and preschool children.

Filed under: Drug and Alcohol Rehabilitation

PLoS Negl Trop Dis. 2012 Oct; 6(10): e1864
Sousa-Figueiredo JC, Betson M, Atuhaire A, Arinaitwe M, Navaratnam AM, Kabatereine NB, Bickle Q, Stothard JR

In 2012 the WHO formally recognised that infants and preschool children are at significant risk of schistosomiasis and qualify for treatment with praziquantel (PZQ). Targeted surveys determining both the performance and safety of this drug are now needed in endemic areas. We have formally assessed parasitological cure and putative side-effects in a prospective cohort of Schistosoma mansoni-infected children (aged 5 months-7 years old) in lakeshore settings of Uganda.From a total of 369 children found to be egg-patent for intestinal schistosomiasis, 305 were followed-up three to four weeks after PZQ treatment and infection status re-assessed. Separately, a previously tested side-effect questionnaire was employed before and 24 hours after PZQ treatment to assess incidence and amelioration of symptoms in young children and their mothers. While the overall observed parasitological cure was 56.4%, a significant difference was found between a sub-set of children who had a history of multiple PZQ treatments (between one and four in an 18 month period), where cure rate was 41.7%, and those who had never received treatment (cure rate was 77·6%). PZQ proved to be safe, with only mild reported side effects which cleared within a month after treatment. Prevalence of reported symptoms was significantly lower in children than in mothers, and fewer side-effects were reported upon subsequent rounds of PZQ treatment.Our findings show that PZQ treatment of young children resulted in satisfactory cure rates, and marked reduction in egg-output, with only mild and transient reported side-effects. However, the cure rate is clearly lower in younger children and those with history of previous treatment. Cure rate, but not egg reduction rate, was also lower in children with heavier pre-intervention infection intensity. With chemotherapy now recommended as a long-term strategy for disease control in young children, research into optimising the periodicity of targeted treatment strategies is now crucial.
HubMed – drug

 

Leishmania donovani Argininosuccinate Synthase Is an Active Enzyme Associated with Parasite Pathogenesis.

Filed under: Drug and Alcohol Rehabilitation

PLoS Negl Trop Dis. 2012 Oct; 6(10): e1849
Lakhal-Naouar I, Jardim A, Strasser R, Luo S, Kozakai Y, Nakhasi HL, Duncan RC

Gene expression analysis in Leishmania donovani (Ld) identified an orthologue of the urea cycle enzyme, argininosuccinate synthase (LdASS), that was more abundantly expressed in amastigotes than in promastigotes. In order to characterize in detail this newly identified protein in Leishmania, we determined its enzymatic activity, subcellular localization in the parasite and affect on virulence in vivo.Two parasite cell lines either over expressing wild type LdASS or a mutant form (G128S) associated with severe cases of citrullinemia in humans were developed. In addition we also produced bacterially expressed recombinant forms of the same proteins. Our results demonstrated that LdASS has argininosuccinate synthase enzymatic activity that is abolished using an ASS specific inhibitor (MDLA: methyl-D-L-Aspartic acid). However, the mutant form of the protein is inactive. We demonstrate that though LdASS has a glycosomal targeting signal that binds the targeting apparatus in vitro, only a small proportion of the total cellular ASS is localized in a vesicle, as indicated by protection from protease digestion of the crude organelle fraction. The majority of LdASS was found to be in the cytosolic fraction that may include large cytosolic complexes as indicated by the punctate distribution in IFA. Surprisingly, comparison to known glycosomal proteins by IFA revealed that LdASS was located in a structure different from the known glycosomal vesicles. Significantly, parasites expressing a mutant form of LdASS associated with a loss of in vitro activity had reduced virulence in vivo in BALB/c mice as demonstrated by a significant reduction in the parasite load in spleen and liver.Our study suggests that LdASS is an active enzyme, with unique localization and essential for parasite survival and growth in the mammalian host. Based on these observations LdASS could be further explored as a potential drug target.
HubMed – drug

 

In vivo imaging of brain ischemia using an oxygen-dependent degradative fusion protein probe.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2012; 7(10): e48051
Fujita Y, Kuchimaru T, Kadonosono T, Tanaka S, Hase Y, Tomimoto H, Hiraoka M, Kizaka-Kondoh S, Ihara M, Takahashi R

Within the ischemic penumbra, blood flow is sufficiently reduced that it results in hypoxia severe enough to arrest physiological function. Nevertheless, it has been shown that cells present within this region can be rescued and resuscitated by restoring perfusion and through other protective therapies. Thus, the early detection of the ischemic penumbra can be exploited to improve outcomes after focal ischemia. Hypoxia-inducible factor (HIF)-1 is a transcription factor induced by a reduction in molecular oxygen levels. Although the role of HIF-1 in the ischemic penumbra remains unknown, there is a strong correlation between areas with HIF-1 activity and the ischemic penumbra. We recently developed a near-infrared fluorescently labeled-fusion protein, POH-N, with an oxygen-dependent degradation property identical to the alpha subunit of HIF-1. Here, we conduct in vivo imaging of HIF-active regions using POH-N in ischemic brains after transient focal cerebral ischemia induced using the intraluminal middle cerebral artery occlusion technique in mice. The results demonstrate that POH-N enables the in vivo monitoring and ex vivo detection of HIF-1-active regions after ischemic brain injury and suggest its potential in imaging and drug delivery to HIF-1-active areas in ischemic brains.
HubMed – drug

 


 

PSA: Young Roach Television Commercial ( NBC-CBS-ABC-PCNC) – Young Roach Feat. Lux Produced by Lux Shot & Directed by @LamarGodson Now Airing on NBC, CBS, ABC and Pittsburgh’s PCNC Daily. Follow Young Roach on Twitter @ILoveYoungRoach Please Visit www.greenbriar.net For Help and Information. How to Get Help Greenbriar Treatment Center has a full continuum of care to assist the chemically dependent individual on their road to recovery through individualized treatment programming. An admissions therapist will conduct a preliminary assessment to determine the most appropriate level of care in which to begin the treatment process. Greenbriar provides comprehensive, innovative and compassionate residential programs for individuals suffering with addiction. Our unique drug and alcohol rehabilitation program uses a multi-disciplinary approach to drug and alcohol rehabilitation, with a team of addiction professionals including licensed and certified counselors, board certified psychiatrists, licensed psychologists, medical doctors and a broad range of nurses, nursing assistants, and psychiatric nurses who specialize in addiction, alcoholism and dual diagnosis, and other highly trained and credentialed professionals who collaborate to guide each resident through a thorough diagnosis, individualized addiction treatment and aftercare.

 

More Drug And Alcohol Rehabilitation Information…