A New Combination MALDI Matrix for Small Molecule Analysis: Application to Imaging Mass Spectrometry for Drugs and Metabolites.

A new combination MALDI matrix for small molecule analysis: application to imaging mass spectrometry for drugs and metabolites.

Filed under: Drug and Alcohol Rehabilitation

Analyst. 2012 Oct 22;
Shanta SR, Kim TY, Hong JH, Lee JH, Shin CY, Kim KH, Kim YH, Kim SK, Kim KP

Since the development of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, this procedure has been specifically used for analyzing proteins or high molecular weight compounds because of the interference of matrix signals in the regions of the low mass range. Recently, scientists have been using a wide range of chemical compounds as matrices that ionize small molecules in a mass spectrometer and overcome the limitations of MALDI mass spectrometry. In this study, we developed a new combination matrix of 3-hydroxycoumarin (3-HC) and 6-aza-2-thiothymine (ATT), which is capable of ionizing small molecules, including drugs and single amino acids. In addition to ionization of small molecules, the combination matrix by itself gives less signals in the low mass region and can be used for performing imaging mass spectrometry (IMS) experiments on tissues, which confirms the vacuum stability of the matrix inside a MALDI chamber. The drug donepezil was mapped in the intact tissue slices of mice simultaneously with a spatial resolution of 150 ?m during IMS. IMS analysis clearly showed that intact donepezil was concentrated in the cortical region of the brain at 60 min after oral administration. Our observations and results indicate that the new combination matrix can be used for analyzing small molecules in complex samples using MALDI mass spectrometry.
HubMed – drug

 

FOXM1 coming of age: time for translation into clinical benefits?

Filed under: Drug and Alcohol Rehabilitation

Front Oncol. 2012; 2: 146
Teh MT

A decade since the first evidence implicating the cell cycle transcription factor Forkhead Box M1 (FOXM1) in human tumorigenesis, a slew of subsequent studies revealed an oncogenic role of FOXM1 in the majority of human cancers including oral, nasopharynx, oropharynx, esophagus, breast, ovary, prostate, lung, liver, pancreas, kidney, colon, brain, cervix, thyroid, bladder, uterus, testis, stomach, skin, and blood. Its aberrant upregulation in almost all different cancer types suggests a fundamental role for FOXM1 in tumorigenesis. Its dose-dependent expression pattern correlated well with tumor progression starting from cancer predisposition and initiation, early premalignancy and progression, to metastatic invasion. In addition, emerging studies have demonstrated a causal link between FOXM1 and chemotherapeutic drug resistance. Despite the well-established multifaceted roles for FOXM1 in all stages of oncogenesis, its translation into clinical benefit is yet to materialize. In this contribution, I reviewed and discussed how our current knowledge on the oncogenic mechanisms of FOXM1 could be exploited for clinical use as biomarker for risk prediction, early cancer screening, molecular diagnostics/prognostics, and/or companion diagnostics for personalized cancer therapy.
HubMed – drug

 

Abrogating endocrine resistance by targeting ER? and PI3K in breast cancer.

Filed under: Drug and Alcohol Rehabilitation

Front Oncol. 2012; 2: 145
Fox EM, Arteaga CL, Miller TW

Antiestrogen therapies targeting estrogen receptor ? (ER) signaling are a mainstay for patients with ER+ breast cancer. While many cancers exhibit resistance to antiestrogen therapies, a large body of clinical and experimental evidence indicates that hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway promotes antiestrogen resistance. In addition, continued ligand-independent ER signaling in the setting of estrogen deprivation may contribute to resistance to endocrine therapy. PI3K activates several proteins which promote cell cycle progression and survival. In ER+ breast cancer cells, PI3K promotes ligand-dependent and -independent ER transcriptional activity. Models of antiestrogen-resistant breast cancer often remain sensitive to estrogen stimulation and PI3K inhibition, suggesting that clinical trials with combinations of drugs targeting both the PI3K and ER pathways are warranted. Herein, we review recent findings on the roles of PI3K and ER in antiestrogen resistance, and clinical trials testing drug combinations which target both pathways. We also discuss the need for clinical investigation of ER downregulators in combination with PI3K inhibitors.
HubMed – drug

 

Find More Drug And Alcohol Rehabilitation Information…