Drug and Alcohol Rehabilitation: Drug Discovery: A Helping Hand.

Drug discovery: A helping hand.

Filed under: Drug and Alcohol Rehabilitation

Nature. 2012 Dec 6; 492(7427): 143-5
Gura T

HubMed – drug

 

An Epidemiological Model for Examining Marijuana Use over the Life Course.

Filed under: Drug and Alcohol Rehabilitation

Epidemiol Res Int. 2012; 2012:
Paddock SM, Kilmer B, Caulkins JP, Booth MJ, Pacula RL

Trajectories of drug use are usually studied empirically by following over time persons sampled from either the general population (most often youth and young adults) or from heavy or problematic users (e.g., arrestees or those in treatment). The former, population-based samples, describe early career development, but miss the years of use that generate the greatest social costs. The latter, selected populations, help to summarize the most problematic use, but cannot easily explain how people become problem users nor are they representative of the population as a whole. This paper shows how microsimulation can synthesize both sorts of data within a single analytical framework, while retaining heterogeneous influences that can impact drug use decisions over the life course. The RAND Marijuana Microsimulation Model is constructed for marijuana use, validated, and then used to demonstrate how such models can be used to evaluate alternative policy options aimed at reducing use over the life course.
HubMed – drug

 

Metformin limits the tumourigenicity of iPS cells without affecting their pluripotency.

Filed under: Drug and Alcohol Rehabilitation

Sci Rep. 2012; 2: 964
Vazquez-Martin A, Cufi S, Lopez-Bonet E, Corominas-Faja B, Oliveras-Ferraros C, Martin-Castillo B, Menendez JA

The antidiabetic drug metformin efficiently circumvents the dilemma that in reducing the tumourigenicity of stem cells, their essence, specifically their pluripotency, must also be sacrificed. Metformin prevents the occurrence or drastically reduces the size and weight of teratoma-like masses after the transplantation of induced pluripotent stem (iPS) cells into immunodeficient mice. Yet, iPS cells implanted into metformin-treated mice retain full pluripotency, as they produce the same number of distinct tissue types derived from the three embryonic germ layers that is observed in untreated mice. Mechanistically, metformin appears to suppress the Oct4-driven compartment of malignant stem cells responsible for teratocarcinoma growth while safeguarding an intact, Oct4-independent competency to generate terminally differentiated tissues. Metformin’s ability to efficiently and specifically control the tumourigenic fate of teratoma-initiating iPS cells without interfering with their pluripotency not only has implications for the clinical use of iPS cells but also in stem cell biology, cancer and ageing.
HubMed – drug

 

More Drug And Alcohol Rehabilitation Information…