Current Status of 5?-Reductase Inhibitors in Prostate Disease Management.

Current status of 5?-reductase inhibitors in prostate disease management.

Korean J Urol. 2013 Apr; 54(4): 213-9
Kang DI, Chung JI

The key enzyme in the androgen synthesis and androgen receptor pathways is 5?-reductase (5-AR), which occurs as three isoenzymes. Types I and II 5-ARs the most important clinically, and two different 5-AR inhibitors (5-ARIs), finasteride and dutasteride, have been developed. Several urology associations have recommended and upgraded the use of 5-ARIs for an enlarged prostate with lower urinary tract symptoms. In the Prostate Cancer Prevention Trial and the Reduction by Dutasteride of Prostate Cancer Events Trial, 5-ARIs reduced the incidence of low-grade prostate cancer. However, despite the documented reductions in the overall incidence of prostate cancer, 5-ARIs are at the center of a dispute. The American Society of Clinical Oncology (ASCO) and the American Urology Association (AUA) presented clinical guidelines for the use of 5-ARIs for chemoprevention of prostate cancer in 2008. However, ASCO/AUA has eliminated these from the main “Clinical Guidelines” in 2012, because the U.S. Food and Drug Administration denied a supplemental New Drug Application for the use of dutasteride for prostate cancer chemoprevention. The 5-ARIs can also be used to manage hemospermia and prostatic hematuria, and to prevent intraoperative bleeding, although there is insufficient evidence for a standard strategy. This review summarizes the current use of 5-ARIs for prostate disease, including benign prostate hyperplasia, prostate cancer, prostate-related bleeding, and hemospermia. HubMed – drug


Diaphragm atrophy and contractile dysfunction in a murine model of pulmonary hypertension.

PLoS One. 2013; 8(4): e62702
Ahn B, Empinado HM, Al-Rajhi M, Judge AR, Ferreira LF

Pulmonary hypertension (PH) causes loss of body weight and inspiratory (diaphragm) muscle dysfunction. A model of PH induced by drug (monocrotaline, MCT) has been extensively used in mice to examine the etiology of PH. However, it is unclear if PH induced by MCT in mice reproduces the loss of body weight and diaphragm muscle dysfunction seen in patients. This is a pre-requisite for widespread use of mice to examine mechanisms of cachexia and diaphragm abnormalities in PH. Thus, we measured body and soleus muscle weight, food intake, and diaphragm contractile properties in mice after 6-8 weeks of saline (control) or MCT (600 mg/kg) injections. Body weight progressively decreased in PH mice, while food intake was similar in both groups. PH decreased (P<0.05) diaphragm maximal isometric specific force, maximal shortening velocity, and peak power. Protein carbonyls in whole-diaphragm lysates and the abundance of select myofibrillar proteins were unchanged by PH. Our findings show diaphragm isometric and isotonic contractile abnormalities in a murine model of PH induced by MCT. Overall, the murine model of PH elicited by MCT mimics loss of body weight and diaphragm muscle weakness reported in PH patients. HubMed – drug


A One Year Follow-Up Study of Natural Killer and Dendritic Cells Activities in Multiple Sclerosis Patients Receiving Glatiramer Acetate (GA).

PLoS One. 2013; 8(4): e62237
Høglund RA, Holmøy T, Harbo HF, Maghazachi AA

BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disease. It is thought to be mediated by CD4(+) Th1/Th17 cells. More recently, cells of the innate immune system such as dendritic cells (DCs) and natural killer (NK) cells have been in focus. Glatiramer acetate (GA) is an approved drug for treating MS patients. METHODOLOGYPRINCIPAL FINDINGS: In the current study we examined the activities of NK and DCs in nine relapsing remitting MS patients for up to one year after initiation of GA treatment. We observed that NK cells isolated from most of these patients have increased cytotoxic activity against K562 cells. Further analysis showed that the same NK cells lysed both autologous immature (i) and mature (m) DCs. In most patients this increased activity was correlated with increased NK cell activating cytotoxicity receptors such as NKp30, NKp44, NKp46 and NKG2D, and reduced expression of the inhibitory molecule CD158 on the surface of these NK cells. The expression of HLA-DR was increased on iDCs and mDCs in the majority of the patients, but no consistency was observed for the expression of HLA-I or HLA-E. Also, the co-stimulatory receptors CD80, CD83 or CD86 expression was down-regulated on iDCs and mDCs in most cases. Further, the expression of CCR6 was increased on mDCs at later time points of therapy (between 32-48 weeks). CONCLUSIONSSIGNIFICANCE: Our results are the first showing the effects of GA treatment on NK cells in MS patients, which may impact future use of this and other drugs to treat this disease. HubMed – drug


The NRTIs Lamivudine, Stavudine and Zidovudine Have Reduced HIV-1 Inhibitory Activity in Astrocytes.

PLoS One. 2013; 8(4): e62196
Gray LR, Tachedjian G, Ellett AM, Roche MJ, Cheng WJ, Guillemin GJ, Brew BJ, Turville SG, Wesselingh SL, Gorry PR, Churchill MJ

HIV-1 establishes infection in astrocytes and macroage-lineage cells of the central nervous system (CNS). Certain antiretroviral drugs (ARVs) can penetrate the CNS, and are therefore often used in neurologically active combined antiretroviral therapy (Neuro-cART) regimens, but their relative activity in the different susceptible CNS cell populations is unknown. Here, we determined the HIV-1 inhibitory activity of CNS-penetrating ARVs in astrocytes and macrophage-lineage cells. Primary human fetal astrocytes (PFA) and the SVG human astrocyte cell line were used as in vitro models for astrocyte infection, and monocyte-derived macrophages (MDM) were used as an in vitro model for infection of macrophage-lineage cells. The CNS-penetrating ARVs tested were the nucleoside reverse transcriptase inhibitors (NRTIs) abacavir (ABC), lamivudine (3TC), stavudine (d4T) and zidovudine (ZDV), the non-NRTIs efavirenz (EFV), etravirine (ETR) and nevirapine (NVP), and the integrase inhibitor raltegravir (RAL). Drug inhibition assays were performed using single-round HIV-1 entry assays with luciferase viruses pseudotyped with HIV-1 YU-2 envelope or vesicular stomatitis virus G protein (VSV-G). All the ARVs tested could effectively inhibit HIV-1 infection in macrophages, with EC90s below concentrations known to be achievable in the cerebral spinal fluid (CSF). Most of the ARVs had similar potency in astrocytes, however the NRTIs 3TC, d4T and ZDV had insufficient HIV-1 inhibitory activity in astrocytes, with EC90s 12-, 187- and 110-fold greater than achievable CSF concentrations, respectively. Our data suggest that 3TC, d4T and ZDV may not adequately target astrocyte infection in vivo, which has potential implications for their inclusion in Neuro-cART regimens. HubMed – drug